Encapsulating multiple perspectives in interaction specification

A. Kameas

V. Gerogiannis

K. Diplas P. Pintelas

Dept. of Comp. Engineering Sector of Computational Mathematics & Informatics

& Informatics
Univ. of Patras
Patras, Greece

Abstract

In this paper, a design model that regards an m-
teractive application as a set of processes is described.
Each process can be specified using the IMFG (Inter-
active Multi Flow Graph) model, a process model that
combines Petri Net models properties with users’ cog-
nitive aspects. In this way, several perspectives of -
teractive applications are offered to designers; these
are behavioral, informational, causal and contertual.
IMFG is used as the specification model of a graphical
tool that supports the design of mieractive applications
as the continuous refinement of users’ goals, thus forc-
mg designers to “think in users’ terms”. The strongest
feature of IMFG s that @ can be adapted to every do-
mawn_of interactive applications. As an example, the
model application to the design of the user interface of
a highly-interactive authoring environment is briefly
presented.

1 Introduction

Interaction is a highly-asynchronous process m-
volving two agents: the user and the computer. A
computer can be programmed to act n a consistent
wati depending on the designers’ ability to implemen-
t their model of the application. Human behavior,
however, is unpredictable and introduces mmch non-
determinism in system operation. A fundamental is-
sue in designing mteractive applications is: how to
design an efficient program that would not limit user-
s’ freedom of choice {15]. This problem arises because
the two "agents” involved in the design process, name-
ly designers and (future) system users, have incom-
patible internal models of how the application should
function. During the design of interactive application-
S, two processes must be carried out: the application
design process (carried out by the designers) and the
application-user interaction process (for which design-
ers have to “imagine” how it will be carried out by the
users). It is the embedding of the second process in the
first that this paper is concerned with. More specif-
ically, this paper presents IMFG (Interactive Multi
Flow Gra,phgi,i an extension of the IDFG model (7]
that can be used as a graphical tool for the specifi-
cation of interactive applications. In order to improve
the applicability of the model in different domains of
interaction, control and data information flows were

0-8186-6430-4/94 $4.00 © 1994 IEEE

Dept. of Mathematics
Univ. of Patras
Patras, Greece

separated, while user-defined scope of data had to be
supported.

IMFG is a state model that is based on the for-
malization of Individual Token Nets (ITNs) [12], of
the Petri Nets (PN) model family. PNs are a graph-
theoretic tool with a strong mathematical formalism,
which also have formal language properties that stem
from their semantic equivalence with amtomata and
can be used as language generators. These models are
exceptionally appropriate for analyzing and modeling
discrete event dynamic systems, which may be execut-
ed in parallel and exhibit synchronization and sharing
phenomena [13]. In addition, PNs have many interest-
Ing properties: non-deterministic systems where con-
currency and dynamic sequential dependencies exist
can be mnaturally modeled, states and actions are e
qually represented, different system perspectives can
be modeled, refinement and abstraction permit the
modular and hierarchical representation of complex
systems in a top-down and bottom-up way respective-
ly, the system model is independent of its structure et
al. Finally, PNs are a powerful communication tool:
the system structure is graphically represented, while
its behavior can be simulated by executing the net.

Due to these properties, PNs have been used in the
past to represent, among other things, the interactive
behavior of systems, but these approaches are restrict-
ed to representing some aspects of interaction (for
example, X-Nets %1] represent well control and com-
munication issues, o-Trellis [14] represents well only
hypertext structures etc), and do not use PNs as an
interaction specification tool at all. An interesting ex-
tension of PNs with the mcorporation of objects has
been presented in [2]. Petri Net Objects (PNO) use
objects as the active system entities and PNs to de-
scribe their behavior. Objects can take place at several
dialogs at the same time and have internally triggered
activity (spontaneous activity). PNO and IMFG have
many common features (such as the use of precon-
ditions, of user-trigerred actions etc), but two major
differences: IMFG adopts a process-based approach
of interaction, claiming that a process element can be
active only once within the same context, and uses an
explicit representation of the users’ context of oper-
ation to resolve conflicts (while m PNO an abstract
"inner state of the dialog” is used).

daisy
Rectangle

Among PNs limitations, those that mostly concern
interaction are the large graphs that are usually need-
ed to describe systems of medium complexity, the non-
determinism in state transitions and the complex con-
flict resolution policies required [12].

IMFG aims at helping designers regard the inter-
action process through the users’ perspective. To this
end, a new PN variation is suggested that incorpo-
rates a model of the users’ cognitive capabilities (their
strengths and limitations when they carry out a task).
Although several models of the cognitive perspective
of interaction have been proposed, no one among them
represents well all the three factors that make up a
model of users’ cognitive capacity: short-term mem-
ory, long-term memory and perception [10}. In any
case, none of these models exhibits the completeness
required by an interactive applications specification
tool (for example, Generalized Transition Networks
combined with Production Systems [8], offer a good
description of users’ tasks and of computer processing,
but they lack explicit representation of screen state
and of the options a user has in order to accomplish
a goal). To overcome PNs limitations, simplifications
on the symbols used and their executional semantics
have been used in the past ([16]) and conflict resolu-
tion algorithms have been proposed ([6]). In IMFG,
constraints that represent the cognitive aspects of in-
teraction are placed on the types of information and
of processing elements of the model as well as on the
refinement process.

A brief presentation of the background knowledge
that IMFG uses will be given in the next section, to-
gether with the basic model elements and notions. As
an evaluation example of the model, the application
of IMFG to the modeling of the user interface of an
authoring environment (GEPRIAM [11]) will be pre-
sented, followed by a brief conclusive section.

2 The IMFG model

IMFG adopts several notions from three seeming-
ly unrelated fields: Petri Net models, process modjs
and cognition. PNs constitute one of the more wide-
ly adopted process models that can represent well the
non-deterministic, asynchronous interactive systems.
In process models, interaction is viewed as a process
and therefore interaction design is regarded as a soft-
ware process design. The model adds a representation
for the cognitive load mmposed on users using an
interactive application.

2.1 Petri Net-based formalism

Interaction is an asynchronous process, not explic-
itly related with a strict notion of time, except in the
case of design of special purpose applications (like real-
time systems) and of performance modeling. Individ-
nal Token Nets (ITNss)e[IZ] is one of the most widely
used process models that is non-deterministic and does
not involve any timing aspects. The main components
of an ITN are transitions (the active system compo-
nents), places (the passive system components used to
store information) and fokens (which model the infor-
mation that is stored in places and exchanged between
transitions or modified by them).

Directed arcs are used to connect transitions to
places and places to transitions. H there exists an ar-
row from a place p to a transition ¢ (from ¢ to p), then p
belongs to the pre-set (post-set) of t. Each arrow may
be associated with a label, which may be an expres-
sion of operations on the tokens transferred through
the arrow. Correspondingly, conditions, which de-
termine execution, may be optionally associated with
each transition.

In IMFG, actors are used to model the processing
of tokens and knks to represent the information that
flows among the actors; these correspond directly to
the transitions and places of an ITN model. An actor
is described by:

e its imput and output Enks that make up its inter-
face part

e its function included in its functional part. An
actor’s functionality may be imherited from ex-
isting actor templates (a concept adopted from
Petri Net Objects [2]), or described using an
object-oriented programming language (an ap-
proach similar to that in [1])

e a set of rules that make up its behavioral part.
The left-hand side of each rule forms a precon-
dition on the actors’ mput links, while the right-
hand side part forms a postcondition on its output
links.

To correctly represent all the perspectives for an -
teractive application Links are typed, in the sense that
each type holds different kind of mformation token-
s. However, no conditions are placed on the flow of
tokens.

The starting state of an ITN & represented with
an instial marking which defines the tokens mitially
contained in the places of the net. A tramsition ¢ is
activated when both every input place p (p belongs
in the pre-set of t) contains every token that is mec-
essary for the substitution of ¢, and the condition is
fulfilled. An activated transition ¢ occurs (fires) non-
deterministically and mstantaneously two events take
place: those tokens indicated by the labels of the ar-
rows from p to ¢ (input arrows) are removed from every
input place p of ¢, and these tokens are added to all the
output places p of ¢ that are indicated by the labels of
arrows from t to p (output arrows). A transition firing
changes the marking of the ITN and is said to cause
a state transition.

An actor fires when the precondition of one of the
rules of its behavioral part is satisfied. The tokens
of the input links specified in the rule are consumed
and tokens are produced in the links specified by the
postcondition of the same rule. No actor can fire un-
less it contains a token i its mput goal link; in this
case, it is added in the actor-ready Ust, where the sys-
tem keeps all the actors that may fire with the next
user action. Consequently, this list represents all the
actions available to users towards the achievement of
goal(s) pursued at the time, which can be used as a
representation of state in a user-centered system. Ac-
tor firing is enacted by a token in its input event link;

daisy
Rectangle

with each firing the contents of the actor-ready list
change.

PNs have been used to model Communicating Se-
quential Process-like systems, leading to a better un-
derstanding of the behavior of programs [3]. This ap-
proach, however, aims at antomating the process of
deriving PNs from program code, covering exactly the
reverse procedure than the one presented here.

IMFG supports the refinement property of ITNs.
During actor and link refinement, the system ensures
that actors and links of the higher level can be syn-
thesized by actors and links of the lower level in two
ways:

e as a plan consisting of obligatory and probably
ordered actions (AND-plan),

e by permitting the user to choose among alterna-
tive actions (OR-plan)

The other two refinement types contained m IDFG
(namely, sequential plan and obligatory but indepen-
dent of sequence plan) have proved of little use, and
thus, have been dropped.

The perspective preserving refinement and tem-
plate inheritance properties of IMFG aim at reducing
the size of resulting graphs, and lead to the develop-
ment of less complex application models. In IMFG,
special graphs called Ebrary actors are used to sup-
port refinement. A library actor is a system-provided
component with pre-defined behavior and functional-
ity.

2.2 Process modeling

A process has been defined as a set of partially or-
dered steps intended to reach a goal. Consequently, if
a user task is considered equivalent to a process, then a
user action is synonymous to a process step. The three
most widely adopted components of a process model
are: agent (an actor, user or computer, who performs
a process element), mle (a set of process steps to be
assigned to an agent) and artifact (a product created
or modified by the execution of a process step).

Traditional Petri Net models represent well only the
three tElrocess perspectives, namely functional, (repre-
sents the process steps being performed and the flow of
informational entities among them), behavioral (repre-
sents the conditions under which these steps are per-
formed) and organizational (represents the events that
trigger process steps and the enactors of these events),
while they constitute a weak representation means of
tnformational perspective, which represents the struc-
ture and the relationships among mformational enti-
ties produced or manipulated by a process. When
combined, these perspectives will produce an integrat-
ed, consistent and complete model of the process de-
scribed [5].

Using the link types supported by IMFG the fol-
lowing aspects of the interactive application can be
described:

Behavioral: condition links are used to model flow of
control and state information, defining the flow of
application execution and its screen effects

Informational: date links are used for data and pa-
rameter passing among actors, modeling data
flow during application execution

Causal: two event link types, namely user action
and system action links are used to represent the
events that take place in the system

Contextual: the link goalis used to represent the con-
text of user actions by defining the goal to which
the user plan that the actor is part of, belongs

IMFG provides multiple views of an interactive ap-
plication Ey representing well all the four interaction
process perspectives. The functional perspective can
be viewed by taking into account only the functional
part of the actors and by using only the links of types
data, user action and system action. The behavioral
perspective is represented with the behavioral actor
parts and the links of types user action, system ac-
tion, and condition. The organizational perspective
uses user action and system action links. Finally, the
informational perspective uses data links and the links
refinement property. Thus, a complete model of the
interaction process can be developed, enhanced with
a cognitive perspective represented with goal links.

2.3 Cognitive aspects

The role of actors in interaction representation is
twofold: they are the agents of the model which trans-
form the artifacts (tokens) and at the same time they
represent the processing steps of a user’s task. Each
actt;r represents an action in a users plan towards some
goal.

All models of human behavior during interaction
are based on the notion that the user systematical-
ly moves towards a specified goal or goals by recalling
those actions that relate to a goal, forming one or more
action sequences that lead to a goal, choosing one a
mong them and executing it [9]. One of these models
(GO%/IS [4]) divides users’ knowledge into goals (the
achievements of user actions), operators (the lowest-
level motor and mental actions), methods (sequences of
activities that accomplish a goal or subgoal expressed
as combinations of the primitive operators) and se-
lection rules (used to choose a method given certain
conditions).

The cognitive load on users short-term memory is
expressed by the unaccomplished goals or subgoals or
other state representations that users have to keep in
mind during interaction, while that on their long-term
memory is usually represented with the set of actions
and rules that users have to remember [10]. This load
may be partially relieved if the model includes some
kind of representation of screen contents.

The actor-ready list that is maintained by the sys-
tem during execution of IMFG resembles tﬁe goal s
tack of the GOMS model. The actors in this list rep-
resent in essence all the available user actions at any
moment, and consequently, can be used to define cur-
rent application state. By using context-dependent
actor firing rules, non-determinism of interactive ap-
plications s reduced to a level defined by user current
goals. In addition, the reachability set (that is, the set

daisy
Rectangle

of states reachable from the current state) for any giv-
en state can be determined more easily, since only the
actors in the actor-ready list have to be examined each
time. Goal links are also used for conflict resolution:
the actors in the same context as the last actor that
fired are tried for execution first when a new event
arrives. Finally, condition links can be used for the
representation of screen state, enabling the designers
to encompass users’ perception in the design.

3 Using IMFG to represent

GEPRIAM-user interaction

To design an interactive application using IMFG,
designers have to proceed in a top-down way, from the
definition of high-level goals towards the implementa-
tion of elementary actions. IMFG encompasses cogni-
tive issues during interaction specification by forcing
every actor refinement to be context-based. A conse-
quence of this rule is that every actor must belong to
a goal-leading sequence, which means that all actors
have an input link of type goal. The designers will
use action-modeling actors when they have reached
the point where actual system operations have to be
described. IMFG permits the simulation of applica-
tion behavior by executing only the high-level context-
modeling actors (that represent user actions towards
high-level goals). In this way, a description of the be-
havior of the application is available at every point of
the design, ensuring that user requirements will be fi-
nally met. Furthermore, IMFG promotes reusability
of application parts of any size. Designers may reuse
abstract computational parts, or complete user goals.

IMFG can be adapted to represent interactive ap-
plications in different domains; it suffices to define a
new complete set of tokens for the goal links. An ex-
ample of this important property is presented in this
section, where the use of IMFG in modeling the user
interface of an authoring environment is briefly dis-
cussed. In the followin égures, rectangles are used to
depict actors, round-eﬁged rectangles for library ac-
tors, thick-line circles for user or system action links,
dotted-line circles for goals and plain-line circles for
the other links. Arrows are used to depict goal de-
composition and flow of information. Note that only
data tokens actually "flow” in the graph. Conditions
links assume tokens from a global "pool of condition-
s”, while event links are assigned tokens by an Exter-
nal Event Handling mechanism. User action and goal
links are labelled for dlarity (output goal links are la-
belled as goalOK).

GEPRIAM [11]is a highly interactive authoring en-
vironment that has been designed to impose as less
cognitive load on the authors as possible, by mak-
ing efficient use of screen space and by adopting a
highly-structured model of the anthoring process. In
this case, the anthoring process (which is the process
of interacting with an authoring system) is separated
into three distinct phases (content entry, methodol-
ogy description, instructional strategy specification)
each leading to the satisfaction of a macro-goal. A
macro-goal 15 decomposed into anthoring goals (a-
goals), which are further decomposed mto subgoal-
s. Each a-goal is represented with an anthoring tool,

Specify learning unit name The role of the ...

Specify learning unit type TEXT

Specify learning unit filename CHAP1_12.TXT

Specify test type

(a)

SPECIFY LEARNING UNIT NAME

NAME: | The role of the project manager

(b)

Figure 1: The GEPRIAM user interface elements used
in the example

which corresponds to an integral context of operation.
Within this context, authors may achieve amthoring
subgoals by using various mterface widgets (such as
menus, selectors, buttons etc) which support the cor-
responding actions. Authoring data can be input to
the system by a special widget called control. Controls
represent the context of the most elementary author-
ing actioms.

In figure l.a, the control menu of one of GEPRIAM
tools is depicted. This tool, Reusability Base Manag-
er, s used by the author to construct an index to the
:Cigplication content base by specifying the execution

aracteristics of learning units (one database entry
per learning unit). To construct an index entry, the
author must give the unit’s name, type, filename that
holds unit’s contents, and test type, if the learning uw
nit is of type test. To this end, the author must use
four controls: Specify Learning Unit Name, Specify
Learning Unit Type, Specify Learning Unit Filename
and Specify Test Type. Note that, in order for the con-
trol Test Type to be available, the author mmst first
specify *TYPE=test” using control Specify Learning
Unit Type.

In figure 2.2, the IMFG that represents interaction
with this menu is depicted. The overall goal (g: con-
struct file entry) is decomposed into a set of subgoals
which must all be achieved (AND-plan modeling ac-
tor): sgl (give entry’s name), sg2 (give entry’s (fe)
and sg3 (give filename). Actor C2 is further refined in
figure 2.b. Note that goal sg2 is further decomposed
into sg2.1 (give entry’s principal type), sg2.2 (give test
type, if the learning unit is a test) and sg2.3, which is

daisy
Rectangle

construct

move mouse
file o over control
entry 3’ menu
4
ANDS
ﬁgcpkﬁ Coifr; : sgl : sg2 : sg3 .?Sl'ipiliﬁl;,
Leqrning ’\ I" ,y\ Learning
Unit Name" | (o ! Unit
: : : Filename"
O | '
sglOK ’ . (t, Y
Y sg20K T L sg30K

s
(¥}

Vs g2
A 4
(ANDS)
]]
sg2.1 click on
"t; l'smfy ,* s click
3 Learning 'l'

5g2.10K

(b) |
\

(ANDE)

,t' sg20K

\

-

Figure 2: The IMFG that represents mteraction with the control menu

a NULL subgoal. NULL subgoals, and the associated
NULL actors are used for the sake of completeness and
for prototyping purposes. Actor C5 does not become
ready-to-fire unless actor C4 has fired and produced a
token on the data link (this part of the graph i a re-
finement of an OR-plan modeling actor). This means
that menu item 4 does not become available unless
menu item 2 contains value "TEST”.

In figure 1.b one of the controls of this menu (name-
ly Specify Learning Unit Name) is depicted. By us-
ing it the authors define the unit name (by typing
inside the control screen area), or open a selector to
choose one (button SELECT). The author may also
clear the typed mame (button CLEAR), or undo the
last non—definitive control operation (button UNDO).
As definitive operations are considered the confirma-
tion (button ADD) or cancellation (button CANCEL)
of the contents of control screen area. Since the control
doses after a definitive operation, an UNDO command
does not have a context of operation and is therefore
not applicable. Interaction with this control is repre-
sented with the IMFG of figure 3, which depicts a type

OR-plan modeling actor that can be refined into two
plans: one AND-plan and one OR-plan. The former
is further refined into two OR-plan modeling actors.

These two IMFGs represent the concept of several
application perspectives: by examining only the dot-
tetf links, designers can have a contextual perspective
of the application, while thick lines represent a causal
perspective.

4 Conclusions

In this paper, IMFG (Interactive Multi Flow
Graph), a model for the specification of interactive ap-
plications has been presented. This model is a graph-
ical design tool that encompasses several application
perspectives. An application is regarded as a set of
graphs composed of actors, the active model compo-
nents responsible for information transformation, and
links, which are used as passive entities that store and
transfer mformation. Apart from the pure computa-
tional perspective, IMFG represents the decomposi-
tion of events that trigger actor firing, as well as the
data flow among these actors. To represent this func-

daisy
Rectangle

tionality, IMFG is based on Individual Token Nets,
one of the more general Petri Net variations. Although
Petri Net models have been used i the past for the
representation of interaction, there exists no model, at
least to our knowledge, that incorporates users’ cog-
nitive modeling, as is the case with IMFG, which uses
a link of type goal to explicitly model users goal-plan
decomposition and to place user actions in context.
For the representation of this aspect, IMFG is based
on cognitive models of user behavior, ike GOMS and
Generalized Transition Networks.

IMFG resulted from the application of IDFG (In-
teractive Data Flow Graph) to the modeling of differ-
ent interactive applications (in this paper, the repre-
sentation of an interactive authoring environment was
presented). IDFG proved of limited applicability to
different interaction domains and many of its notions
had to be generalized. Two independent types of ac-
tor refinement are supported, while link refinement is
a new capability not mcluded in IDFG. Finally, the
design of an application does not point to any explic-
it implementation architecture, since only machine-
independent sharing or communication mechanisms
are specified.

A'limitation of IMFG is that it does not yet include
any timing aspects, which are not necessary in arder
to design using users’ plans, but must be taken mto
account when designing for concurrent execution con-
texts and for performance modeling. In addition, the
efficiency of the model has not been tested in large s-
cale applications, where complex graphs are expected
to come up. A graphical editor that, together with
the extension of the model with time stamps, will en-
able the quantitative measuring of the efficiency of the
model is currently under development. This editor will
eventually be part of a complete application genera-
tor, i.ncludin% user interface and code generators, and
full support for an IMFG reusability li%)ra,ry.

References
[1] S. Antoniazzi, A. Balboni and W. Fornaciari, "X-
Nets: a visual formalism for system specification
and analysis”. Proceedings of the 19th EUROMI-
CRO Conference, Barcelona, Spain, Sept. 6-9,
1993, pp 71-78.

[2] R. Bastide and P. Palanque, “Petri Net object-
s for the design, validation and prototyping of
user-driven interfaces”. Proceedings of INTER-
ACT 90, Cambridge, UK, Aug. 27-31, 1990, pp
625-631.

3] G. Balbo, S. Donatelli and G. Franceschinis,
”Understanding parallel programming behavior
through Petri Net models”. Journal of Parallel
and Distributed Computing, 15(3), 1992, pp 171-
187.

4] S. K Card, T. P. Moran and A. Newell,
The psychology of human-computer interaction.
Lawrence-Erlbaum associates, 1983.

[5] B. Curtis, M. L Keliner and J. Over, "Process
modeling”. Communications of the ACM, 35(9),
Sept. 1992, pp 75-90.

[6] A. Javor and A. Vigh, "Conflict handling in high-
level Petri Nets”. Microprocessing and micropro-
gramming, 39(2-5), Dec. 1993, pp 133-136.

7] A. Kameas, S. Papadimitriou, P. Pintelas and
G. Pavlides, "IDFG: an interactive applications
specification model with phenomenological prop-
erties”. Proceedings of the 19th EUROMICRO
Conference, Barcelona, Spain, Sept. 6-9, 1993, pp
615-624.

8] D. E. Kieras and P. G. Polson, "An approach to
the formal analysis of user complexity”. Inferna-
tional Journal of Man-Machine Studies, 22, 1985,
pp 365-394.

[0] A. Newell and H. A. Simon, Human problem solv-
tng. Prentice-Hall, 1972.

[10] J. R. Olson, "Cognitive analysis of peoples use
of software”. In Interfacing thought: cognitive as-
pects of human-computer wteractiion (J. M. Car-
roll, ed), MIT Press, 1987, pp 260-293.

[t1] P. Pintelas, A. Kameas and M. Crampes, "Com-
puter based tools for methodology teaching”.
Proceedings of the $4th ADCIS/SIGCUE Con-
ference, Norfolk, USA, Nov. 811, 1992, pp 341-
355.

[12] W. Reisig, A primer i Petri Net design.
Springer, 1992.

[13] M. Silva and J. M. Colom, "Petri Nets applied
to the modeling and analysis of computer archi-
tecture problems”. Proceedings of the 19th EU-
ROMICRO Conference, Barcelona, Spain, Sept.
6-9, 1993, pp 1-11.

[14] P. D. Stotts and R. Furuta, "Petri-Net-Based Hy-
pertext: Document structure with browsing se-
mantics”.ACM Transactions on Information Sys-
tems, 7(1), 1990, pp 3-29.

[15] H. Thimbleby, User wnterface design. ACM Press,
1990.

[16] K. M. Valavanis, "On the hierarchical modeling
analysis and simulation of flexible manufacturing
systems with extended Petri Nets”. IEEE Trans-
actions on Systems, Man and Cybernetics, 20(1),
1990, pp 94-110.

daisy
Rectangle

) click on Specify

v Learning Unit Name

(ORS)
]
! Y

(b D ey (059 Bt
T ' C

Y Y ADD . o button
D L\ button) ,
[P

10

[4)]

< -
>
oy

1
o,) %
Press m CLEAR
SELECT button A

A Az | siea A3 |1 A4] tRdo
" Area | button m

€~

<-
¢ < -
- -
-
< -

C ANDE) ::
y

(ORE)

Figure 3: The IMFG that represents interaction with the control

daisy
Rectangle

